Classification of Hidden Dynamics in Discontinuous Dynamical Systems
نویسندگان
چکیده
Ordinary differential equations with discontinuous right-hand side, where the discontinuity of the vector field arises on smooth surfaces of the phase space, are the topic of this work. The main emphasis is the study of solutions close to the intersection of two discontinuity surfaces. There, the so-called hidden dynamics describes the smooth transition from ingoing to outgoing solution directions, which occurs instantaneously in the jump discontinuity of the vector field. This article presents a complete classification of such transitions (assuming the vector fields surrounding the intersection are transversal to it). Since the hidden dynamics is realized by standard space regularizations, much insight is obtained for them. One can predict, in the case of multiple solutions of the discontinuous problem, which solution (classical or sliding mode) will be approximated after entering the intersection of two discontinuity surfaces. A novel modification of space regularizations is presented that permits to avoid (unphysical) high oscillations and makes a numerical treatment more efficient.
منابع مشابه
Dynamical distance as a semi-metric on nuclear conguration space
In this paper, we introduce the concept of dynamical distance on a nuclear conguration space. We partition the nuclear conguration space into disjoint classes. This classification coincides with the classical partitioning of molecular systems via the concept of conjugacy of dynamical systems. It gives a quantitative criterion to distinguish dierent molecular structures.
متن کاملDynamical formation of stable irregular transients in discontinuous map systems.
Stable chaos refers to the long irregular transients, with a negative largest Lyapunov exponent, which is usually observed in certain high-dimensional dynamical systems. The mechanism underlying this phenomenon has not been well studied so far. In this paper, we investigate the dynamical formation of stable irregular transients in coupled discontinuous map systems. Interestingly, it is found th...
متن کاملDynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review
The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...
متن کاملThe Dynamics of Regularized Discontinuous Maps with Applications to Impacting Systems
One-dimensional piecewise-smooth discontinuous maps (maps with gaps) are known to have surprisingly rich dynamics, including periodic orbits with very high period and bifurcation diagrams showing period-adding or period-incrementing behavour. In this paper we study a new class of maps, which we refer to as regularised one-dimensional discontinuous maps, because they give very similar dynamics t...
متن کاملUnstable Attractors: Existence and Robustness in Networks of Oscillators With Delayed Pulse Coupling
We consider unstable attractors: Milnor attractors A such that, for some neighbourhood U of A, almost all initial conditions leave U . Previous research strongly suggests that unstable attractors exist and even occur robustly (i.e. for open sets of parameter values) in a system modelling biological phenomena, namely in globally coupled oscillators with delayed pulse interactions. In the first p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 14 شماره
صفحات -
تاریخ انتشار 2015